Egypt, India explore joint investments in gas, mining, petrochemicals    Egypt launches National Strategy for Rare Diseases at PHDC'25    Egyptian pound inches up against dollar in early Thursday trade    Singapore's Destiny Energy to invest $210m in Egypt to produce 100,000 tonnes of green ammonia annually    Egypt, South Africa discuss strengthening cooperation in industry, transport    Egypt's FM discusses Gaza, Libya, Sudan at Turkey's SETA foundation    UN warns of 'systematic atrocities,' deepening humanitarian catastrophe in Sudan    Egypt's Al-Sisi ratifies new criminal procedures law after parliament amends it    Egypt launches 3rd World Conference on Population, Health and Human Development    Cowardly attacks will not weaken Pakistan's resolve to fight terrorism, says FM    Gold prices in Egypt edge higher on Wednesday, 12 Nov., 2025    Egypt's TMG 9-month profit jumps 70% on record SouthMed sales    Egypt adds trachoma elimination to health success track record: WHO    Egypt, Latvia sign healthcare MoU during PHDC'25    Egypt, India explore cooperation in high-tech pharmaceutical manufacturing, health investments    Egypt, Sudan, UN convene to ramp up humanitarian aid in Sudan    Egypt releases 2023 State of Environment Report    Egyptians vote in 1st stage of lower house of parliament elections    Grand Egyptian Museum welcomes over 12,000 visitors on seventh day    Sisi meets Russian security chief to discuss Gaza ceasefire, trade, nuclear projects    Egypt repatriates 36 smuggled ancient artefacts from the US    Grand Egyptian Museum attracts 18k visitors on first public opening day    'Royalty on the Nile': Grand Ball of Monte-Carlo comes to Cairo    VS-FILM Festival for Very Short Films Ignites El Sokhna    Egypt's cultural palaces authority launches nationwide arts and culture events    Egypt launches Red Sea Open to boost tourism, international profile    Qatar to activate Egypt investment package with Matrouh deal in days: Cabinet    Omar Hisham Talaat: Media partnership with 'On Sports' key to promoting Egyptian golf tourism    Sisi expands national support fund to include diplomats who died on duty    Madinaty Golf Club to host 104th Egyptian Open    Egypt's PM reviews efforts to remove Nile River encroachments    Al-Sisi: Cairo to host Gaza reconstruction conference in November    Egypt will never relinquish historical Nile water rights, PM says    Egypt resolves dispute between top African sports bodies ahead of 2027 African Games    Germany among EU's priciest labour markets – official data    Paris Olympic gold '24 medals hit record value    It's a bit frustrating to draw at home: Real Madrid keeper after Villarreal game    Russia says it's in sync with US, China, Pakistan on Taliban    Shoukry reviews with Guterres Egypt's efforts to achieve SDGs, promote human rights    Sudan says countries must cooperate on vaccines    Johnson & Johnson: Second shot boosts antibodies and protection against COVID-19    Egypt to tax bloggers, YouTubers    Egypt's FM asserts importance of stability in Libya, holding elections as scheduled    We mustn't lose touch: Muller after Bayern win in Bundesliga    Egypt records 36 new deaths from Covid-19, highest since mid June    Egypt sells $3 bln US-dollar dominated eurobonds    Gamal Hanafy's ceramic exhibition at Gezira Arts Centre is a must go    Italian Institute Director Davide Scalmani presents activities of the Cairo Institute for ITALIANA.IT platform    







Thank you for reporting!
This image will be automatically disabled when it gets reported by several people.



A graphene roll-out
Published in The Egyptian Gazette on 18 - 04 - 2018

by Jennifer Chu, Massachusetts Institute of Technology
MIT engineers have developed a continuous manufacturing process that produces long strips of high-quality graphene.
The team's results are the first demonstration of an industrial, scalable method for manufacturing high-quality graphene that is tailored for use in membranes that filter a variety of molecules, including salts, larger ions, proteins, or nanoparticles. Such membranes should be useful for desalination, biological separation, and other applications.
"For several years, researchers have thought of graphene as a potential route to ultrathin membranes," says John Hart, associate professor of mechanical engineering and director of the Laboratory for Manufacturing and Productivity at MIT. "We believe this is the first study that has tailored the manufacturing of graphene toward membrane applications, which require the graphene to be seamless, cover the substrate fully, and be of high quality."
Hart is the senior author on the paper, which appears online in the journal Applied Materials and Interfaces. The study includes first author Piran Kidambi, a former MIT postdoc who is now an assistant professor at Vanderbilt University; MIT graduate students Dhanushkodi Mariappan and Nicholas Dee; Sui Zhang of the National University of Singapore; Andrey Vyatskikh, a former student at the Skolkovo Institute of Science and Technology who is now at Caltech; and Rohit Karnik, an associate professor of mechanical engineering at MIT.
Growing graphene
For many researchers, graphene is ideal for use in filtration membranes. A single sheet of graphene resembles atomically thin chicken wire and is composed of carbon atoms joined in a pattern that makes the material extremely tough and impervious to even the smallest atom, helium.
Researchers, including Karnik's group, have developed techniques to fabricate graphene membranes and precisely riddle them with tiny holes, or nanopores, the size of which can be tailored to filter out specific molecules. For the most part, scientists synthesize graphene through a process called chemical vapor deposition, in which they first heat a sample of copper foil and then deposit onto it a combination of carbon and other gases.
Graphene-based membranes have mostly been made in small batches in the laboratory, where researchers can carefully control the material's growth conditions. However, Hart and his colleagues believe that if graphene membranes are ever to be used commercially they will have to be produced in large quantities, at high rates, and with reliable performance.
"We know that for industrialization, it would need to be a continuous process," Hart says. "You would never be able to make enough by making just pieces. And membranes that are used commercially need to be fairly big ­— some so big that you would have to send a poster-wide sheet of foil into a furnace to make a membrane."
A factory roll-out
The researchers set out to build an end-to-end, start-to-finish manufacturing process to make membrane-quality graphene.
The team's setup combines a roll-to-roll approach — a common industrial approach for continuous processing of thin foils — with the common graphene-fabrication technique of chemical vapor deposition, to manufacture high-quality graphene in large quantities and at a high rate. The system consists of two spools, connected by a conveyor belt that runs through a small furnace. The first spool unfurls a long strip of copper foil, less than 1 centimeter wide. When it enters the furnace, the foil is fed through first one tube and then another, in a "split-zone" design.
While the foil rolls through the first tube, it heats up to a certain ideal temperature, at which point it is ready to roll through the second tube, where the scientists pump in a specified ratio of methane and hydrogen gas, which are deposited onto the heated foil to produce graphene.
"Graphene starts forming in little islands, and then those islands grow together to form a continuous sheet," Hart says. "By the time it's out of the oven, the graphene should be fully covering the foil in one layer, kind of like a continuous bed of pizza."
As the graphene exits the furnace, it's rolled onto the second spool. The researchers found that they were able to feed the foil continuously through the system, producing high-quality graphene at a rate of 5 centimers per minute. Their longest run lasted almost four hours, during which they produced about 10 meters of continuous graphene.
"If this were in a factory, it would be running 24-7," Hart says. "You would have big spools of foil feeding through, like a printing press."
Flexible design
Once the researchers produced graphene using their roll-to-roll method, they unwound the foil from the second spool and cut small samples out. They cast the samples with a polymer mesh, or support, using a method developed by scientists at Harvard University, and subsequently etched away the underlying copper.
"If you don't support graphene adequately, it will just curl up on itself," Kidambi says. "So you etch copper out from underneath and have graphene directly supported by a porous polymer — which is basically a membrane."
The polymer covering contains holes that are larger than graphene's pores, which Hart says act as microscopic "drumheads," keeping the graphene sturdy and its tiny pores open.
The researchers performed diffusion tests with the graphene membranes, flowing a solution of water, salts, and other molecules across each membrane. They found that overall, the membranes were able to withstand the flow while filtering out molecules. Their performance was comparable to graphene membranes made using conventional, small-batch approaches.
The team also ran the process at different speeds, with different ratios of methane and hydrogen gas, and characterized the quality of the resulting graphene after each run. They drew up plots to show the relationship between graphene's quality and the speed and gas ratios of the manufacturing process. Kidambi says that if other designers can build similar setups, they can use the team's plots to identify the settings they would need to produce a certain quality of graphene.
"The system gives you a great degree of flexibility in terms of what you'd like to tune graphene for, all the way from electronic to membrane applications," Kidambi says.
Looking forward, Hart says he would like to find ways to include polymer casting and other steps that currently are performed by hand, in the roll-to-roll system.
"In the end-to-end process, we would need to integrate more operations into the manufacturing line," Hart says. "For now, we've demonstrated that this process can be scaled up, and we hope this increases confidence and interest in graphene-based membrane technologies, and provides a pathway to commercialization."


Clic here to read the story from its source.