Mexico's inflation exceeds expectations in 1st half of April    Egypt's gold prices slightly down on Wednesday    Tesla to incur $350m in layoff expenses in Q2    GAFI empowers entrepreneurs, startups in collaboration with African Development Bank    Egyptian exporters advocate for two-year tax exemption    Egyptian Prime Minister follows up on efforts to increase strategic reserves of essential commodities    Italy hits Amazon with a €10m fine over anti-competitive practices    Environment Ministry, Haretna Foundation sign protocol for sustainable development    After 200 days of war, our resolve stands unyielding, akin to might of mountains: Abu Ubaida    World Bank pauses $150m funding for Tanzanian tourism project    China's '40 coal cutback falls short, threatens climate    Swiss freeze on Russian assets dwindles to $6.36b in '23    Amir Karara reflects on 'Beit Al-Rifai' success, aspires for future collaborations    Ministers of Health, Education launch 'Partnership for Healthy Cities' initiative in schools    Egyptian President and Spanish PM discuss Middle East tensions, bilateral relations in phone call    Amstone Egypt unveils groundbreaking "Hydra B5" Patrol Boat, bolstering domestic defence production    Climate change risks 70% of global workforce – ILO    Health Ministry, EADP establish cooperation protocol for African initiatives    Prime Minister Madbouly reviews cooperation with South Sudan    Ramses II statue head returns to Egypt after repatriation from Switzerland    Egypt retains top spot in CFA's MENA Research Challenge    Egyptian public, private sectors off on Apr 25 marking Sinai Liberation    EU pledges €3.5b for oceans, environment    Egypt forms supreme committee to revive historic Ahl Al-Bayt Trail    Debt swaps could unlock $100b for climate action    Acts of goodness: Transforming companies, people, communities    President Al-Sisi embarks on new term with pledge for prosperity, democratic evolution    Amal Al Ghad Magazine congratulates President Sisi on new office term    Egypt starts construction of groundwater drinking water stations in South Sudan    Egyptian, Japanese Judo communities celebrate new coach at Tokyo's Embassy in Cairo    Uppingham Cairo and Rafa Nadal Academy Unite to Elevate Sports Education in Egypt with the Introduction of the "Rafa Nadal Tennis Program"    Financial literacy becomes extremely important – EGX official    Euro area annual inflation up to 2.9% – Eurostat    BYD، Brazil's Sigma Lithium JV likely    UNESCO celebrates World Arabic Language Day    Motaz Azaiza mural in Manchester tribute to Palestinian journalists    Russia says it's in sync with US, China, Pakistan on Taliban    It's a bit frustrating to draw at home: Real Madrid keeper after Villarreal game    Shoukry reviews with Guterres Egypt's efforts to achieve SDGs, promote human rights    Sudan says countries must cooperate on vaccines    Johnson & Johnson: Second shot boosts antibodies and protection against COVID-19    Egypt to tax bloggers, YouTubers    Egypt's FM asserts importance of stability in Libya, holding elections as scheduled    We mustn't lose touch: Muller after Bayern win in Bundesliga    Egypt records 36 new deaths from Covid-19, highest since mid June    Egypt sells $3 bln US-dollar dominated eurobonds    Gamal Hanafy's ceramic exhibition at Gezira Arts Centre is a must go    Italian Institute Director Davide Scalmani presents activities of the Cairo Institute for ITALIANA.IT platform    







Thank you for reporting!
This image will be automatically disabled when it gets reported by several people.



Study suggests generating solar energy from snow-covered mountains
Electricity must be produced when it is needed, as it is difficult to store large amounts of it
Published in Daily News Egypt on 10 - 01 - 2019

A recent study suggests that solar power can be generated not just summer but in winter as well, by placing solar panels on snow-covered mountains with steep tilt angles. The study aims to transform the seasonal production of solar energy through photovoltaic (PV) cells into PV panels from temporary—in the summer months only—to permanent in order to keep up with the increasing demand for electricity.
According to the results of the study which was published on Monday in the Proceedings of the National Academy of Sciences Journal, placing the solar panels on the snow-covered mountains in this position can generate similar amounts of energy, compared with the placement of solar panels in cities and flat lands-which have a lower surface area-and can convert a large amount of electricity produced from summer to winter, and balance the relation between electricity demand and production during winter and summer.
Electricity must be produced when it is needed, because it is difficult to store large amounts of it. Solar panels produce electricity when it is sunny, but not necessarily when the demand for it is highest. In countries which use a great extent of electricity for cooling purposes, demand and PV production might be well aligned, but in mid-latitude countries the need for electricity is highest in winter when it is cold and dark. Consequently, demand and production do not correlate, according to the lead author of the study, Annelen Kahl, from L'Ecole Polytechnique Fédérale de Lausanne (EPFL), Switzerland.
Kahl informed Daily News Egypt that the higher the contribution of solar PV to a country's electricity budget, the more critical this discrepencancy will become. "It is not just important to produce as much renewable electricity as possible, it is also important to provide it at the right time. Our results show that we can significantly improve from the conventional setting," she said.
She noted that she started working with the renewable energies group at the EPFL in February 2015, but this specific study took probably about 1.5 years.
Achieving the study's goals can be done by placing PV panels under steep tilt angles in a mountainous environment. The resulting effect of boosting winter electricity production is threefold: in the mountains there is less fog and cloud cover in winter than in the valleys (the typical urban installation sites), hence the incoming radiation that reaches the ground is already higher in winter.
Also, by installing the panels with a steeper inclination angle than possible in conventional urban settings (in Switzerland the law requires PV panels to flush with the roof surface), winter production is further increased because the PV surface is more perpendicular to the incoming radiation, taking into consideration that the sun is closer to the horizon in winter than in summer. The snow cover in the mountains increases the reflection of solar radiation onto the surface of the PV panel. This is due to the high reflection of snow in comparison to all other surface cover types such as soil, grass, or concrete.
The cost of the process depends on which PV technology you decide to install, and that is independent of whether it is installed on the roof of a house in a big city, on a building in a ski resort, or on a slope in the mountains. The cost of the associated infrastructure however can vary, according to support structures, cabling, and the connection to the electricity grid, and possibly road access for easy maintenance.
Explaining the process and techniques of generating energy from snow-covered mountains with steep tilt angles, Kahl said that there are three reasons why electricity production in the mountains is advantageous over production in urban areas.
The first reason is that there is less sunshine in winter, as clouds obstruct the sun, therefore less energy will reach the solar panels and they will produce less electricity. Hence, it is better to place them in locations with little cloud cover, such as the mountains. Generally, there is less cloud cover and fog at high elevations during the winter months.
The second reason is that with steep panel tilts, PV panels will generate the utmost amount of electricity when the sun rays hit the surface vertically. In winter the sun stays are very close to the horizon, and in order to receive sun rays vertically the PV panels needs to be very steep. In urban areas the panel inclination is often dictated by the roof's slope, which is more oriented towards summer sun than toward winter sun. In mountain locations the tilt could be optimised for winter production.
The third reason is the extra radiation reflected from the snow-since the snow is white-because it reflects light at all visible wavelengths, which includes most of the energy that comes from the sun. Clean snow can reflect as much as 85% of the incoming energy from the sun. That is almost as if there was sunshine coming from the ground, and it also reaches the surface of the solar panel. How much of it reaches the panel depends again on the inclination. Subsequently, the panel collects extra energy, and can produce additional electricity if there is snow on the ground.


Clic here to read the story from its source.